Loading [MathJax]/jax/output/HTML-CSS/jax.js

Démonstration de la première égalité d’Euclide pas à pas après avoir vu bien entendu ce qu’était cette égalité.

L’énoncé

démonstration première égalité euclide

On considère un triangle ABC rectangle en C.

Soit H le pied de la hauteur de ce triangle issue du sommet C.

Si l’on convient d’utiliser les notations portées sur le dessin ci-dessus, alors:h2=pk.

Démonstration de la première égalité d’Euclide: à l’aide du théorème de Pythagore

D’après le théorème de Pythagore appliqué dans le triangle ABC rectangle en C,c2=a2+b2.On peut alors en conclure que:a2=c2b2et donc:a2=(p+k)2b2=p2+k2+2pkb2.

Le même théorème appliqué dans le triangle CHA rectangle en H,h2=b2p2.

Appliqué dans le triangle CHB rectangle en H, on a:h2=a2k2.

On en déduit alors:b2p2=a2k2b2p2=p2+k2+2pkb2k22b2=2p2+2pkb2=p2+pk

Ainsi,h2=b2p2=p2+pkp2soith2=pk.

À quel niveau peut-on faire cette démonstration ?

Comme vous pouvez le constater, pour démontrer cette égalité d’Euclide, j’utilise l’égalité de Pythagore et la notion de transitivité. On peut donc envisager cette démonstration dès la classe de 4ème.

De plus, elle n’est pas très longue ni compliquée. En guidant les élèves avec quelques questions, elle permet à ces derniers d’acquérir de l’aisance en justification. La classe de 4ème est justement le bon moment pour assoir l’art de la démonstration.

Pour les abonné·e·s de ce site, voici le code source LATEX de la figure (en TiKZ).

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
\documentclass{standalone}
\usepackage{tikz}
\usetikzlibrary{calc}
\setlength{\parindent}{0pt}
\begin{document}
\begin{tikzpicture}
\draw (-4,0) node[left] {A} -- (4,0) node[right] {B} -- (40:4) node[midway,above,rotate=-70] {$a$} node[above right] {C} -- (-4,0) node[midway,above,rotate=30] {$b$};
\draw (40:4) -- ({4*cos(40)},0) node[below] {H} node[midway,left] {$h$};
\draw ({4*cos(40)},0.2) -- ({4*cos(40)+0.2},0.2) -- ({4*cos(40)+0.2},0);
\begin{scope}[shift=(40:4),rotate=-157]
\draw (0,0.2) -- (0.2,0.2) -- (0.2,0);
\end{scope}
\draw[<->,>=latex] (-4,-.3) -- ({4*cos(40)-.1},-.3) node[midway,fill=white] {$p$};
\draw[<->,>=latex] ({4*cos(40)+.1},-.3) -- (4,-.3) node[midway,fill=white] {$k$};
\draw[<->,>=latex] (-4,-.5) -- (4,-.5) node[midway,fill=white,inner ysep=0pt] {$c$};
\end{tikzpicture}
\end{document}
\documentclass{standalone} \usepackage{tikz} \usetikzlibrary{calc} \setlength{\parindent}{0pt} \begin{document} \begin{tikzpicture} \draw (-4,0) node[left] {A} -- (4,0) node[right] {B} -- (40:4) node[midway,above,rotate=-70] {$a$} node[above right] {C} -- (-4,0) node[midway,above,rotate=30] {$b$}; \draw (40:4) -- ({4*cos(40)},0) node[below] {H} node[midway,left] {$h$}; \draw ({4*cos(40)},0.2) -- ({4*cos(40)+0.2},0.2) -- ({4*cos(40)+0.2},0); \begin{scope}[shift=(40:4),rotate=-157] \draw (0,0.2) -- (0.2,0.2) -- (0.2,0); \end{scope} \draw[<->,>=latex] (-4,-.3) -- ({4*cos(40)-.1},-.3) node[midway,fill=white] {$p$}; \draw[<->,>=latex] ({4*cos(40)+.1},-.3) -- (4,-.3) node[midway,fill=white] {$k$}; \draw[<->,>=latex] (-4,-.5) -- (4,-.5) node[midway,fill=white,inner ysep=0pt] {$c$}; \end{tikzpicture} \end{document}
\documentclass{standalone}
\usepackage{tikz}
\usetikzlibrary{calc}
\setlength{\parindent}{0pt}
\begin{document}
\begin{tikzpicture}
\draw (-4,0) node[left] {A} -- (4,0) node[right] {B} -- (40:4) node[midway,above,rotate=-70] {$a$} node[above right] {C} -- (-4,0) node[midway,above,rotate=30] {$b$};
\draw (40:4) -- ({4*cos(40)},0) node[below] {H} node[midway,left] {$h$};
\draw ({4*cos(40)},0.2) -- ({4*cos(40)+0.2},0.2) -- ({4*cos(40)+0.2},0);
\begin{scope}[shift=(40:4),rotate=-157]
\draw (0,0.2) -- (0.2,0.2) -- (0.2,0);
\end{scope}
\draw[<->,>=latex] (-4,-.3) -- ({4*cos(40)-.1},-.3) node[midway,fill=white] {$p$};
\draw[<->,>=latex] ({4*cos(40)+.1},-.3) -- (4,-.3) node[midway,fill=white] {$k$};
\draw[<->,>=latex] (-4,-.5) -- (4,-.5) node[midway,fill=white,inner ysep=0pt] {$c$};
\end{tikzpicture}
\end{document}

0 0 votes
Évaluation de l'article
S’abonner
Notification pour
guest


0 Commentaires
Le plus ancien
Le plus récent Le plus populaire
Commentaires en ligne
Afficher tous les commentaires
0
Nous aimerions avoir votre avis, veuillez laisser un commentaire.x
0
    0
    Votre panier
    Votre panier est vide