application produit scalaire

Application du produit scalaire

En 1ère spécialité Mathématiques, les élèves abordent la notion de produit scalaire de deux vecteurs, notions plutôt abstraite au premier abord. À l’aide du produit scalaire, on peut démontrer des propriétés géométriques importantes, comme la loi des sinus ou encore le théorème d’Al-Kashi, aussi connu sous le nom de loi des cosinus.

Nous allons voir dans cet article que ces deux résultats nous permettent de trouver la solution à un problème posé lors d’un concours mathématique.

(suite…)

cos sin exp : pourquoi écrit-on cos(x)+isin(x)=exp(ix)?

Nous allons voir ce qui lit cos, sin et exp. Un nombre complexe admet trois écritures : sa forme algébrique (z = x + iy), sa forme trigonométrique (z = r[cos(t) + isin(t)]) et… sa forme exponentielle (z = exp(it)). Jusqu’en 2020, les élèves de terminale de France voyaient cette dernière forme comme parachutée. Dans cet article, je vous propose de vous expliquer les raisons pour lesquelles on se permet d’utiliser une telle notation.

(suite…)

La suite de Fibonacci

La suite de Fibonacci est la suite définie par ses deux premiers termes \(F_0=F_1=1\) et par la relation de récurrence suivante:$$\forall n\in\mathbb{N},\ F_{n+2}=F_{n+1}+F_{n}.$$ Nous allons nous pencher sur cette suite afin de déterminer une expression de son terme général en fonction de son rang.

Leonardo Bonacci, dit Fibonacci
(suite…)

Déterminer une valeur approchée de Pi à l’aide des probabilités (méthode de Monte-Carlo sous Python)

\(\pi\) est la constante définie comme étant le rapport de la circonférence d’un cercle et de son diamètre. Et on arrive à démontrer que l’aire du disque défini par ce cercle est égale à : $$\mathcal{A}=\pi \times r^2.$$Nous allons voir dans cet article comme utiliser cette dernière égalité afin de trouver une valeur approchée de \(\pi\) en passant par les probabilités.

(suite…)