Trouver une aire
Comment exprimer en fonction de x, y et z l’aire w ?
Ce problème peut être abordé comme application dans le chapitre des polynômes de degré 2…
(suite…)Comment exprimer en fonction de x, y et z l’aire w ?
Ce problème peut être abordé comme application dans le chapitre des polynômes de degré 2…
(suite…)Le problème est le suivant : trouver l’aire du domaine représenté en bleu sur la figure ci-dessous:
Le problème est le suivant: étant donné un carré ABCD de côté 10, on choisit deux points E et F respectivement sur [AD] et [BC] tels que ED = BF = x. On note G le point d’intersection de [BE] et [AF]. L’angle \(\widehat{AGB}\) est-il constant ? Si oui, que vaut sa mesure ? Si non, entre quelles valeurs varie sa mesure ?
(suite…)Voici un problème que les élèves de Terminale pourront comprendre… si la notion de loi uniforme leur dit quelque chose…
(suite…)Cet article est inspiré d’un problème tiré du 7ème Championnat International des Jeux Mathématiques et Logiques ( demi-finale, 20 mars 1993).
(suite…)Nous allons voir dans cet article une preuve (bien entendu erronée) que 2 = 4. Ce que nous allons voir est compréhensible par des élèves de Terminale ayant vu la notion de continuité de fonctions.
(suite…)Je continue ma série des problèmes qui sont tombés dans des concours mathématiques avec celui-ci, proposé aux International Mathematical Olympiad (IMO).
Trouver toutes les fonctions f de \(\mathbb{Z}\) dans \(\mathbb{Z}\) telles que:$$f(2a)+2f(b)=f(f(a+b)).$$
(suite…)En 1ère spécialité Mathématiques, les élèves abordent la notion de produit scalaire de deux vecteurs, notions plutôt abstraite au premier abord. À l’aide du produit scalaire, on peut démontrer des propriétés géométriques importantes, comme la loi des sinus ou encore le théorème d’Al-Kashi, aussi connu sous le nom de loi des cosinus.
Nous allons voir dans cet article que ces deux résultats nous permettent de trouver la solution à un problème posé lors d’un concours mathématique.
(suite…)Nous allons voir ce qui lit cos, sin et exp. Un nombre complexe admet trois écritures : sa forme algébrique (z = x + iy), sa forme trigonométrique (z = r[cos(t) + isin(t)]) et… sa forme exponentielle (z = exp(it)). Jusqu’en 2020, les élèves de terminale de France voyaient cette dernière forme comme parachutée. Dans cet article, je vous propose de vous expliquer les raisons pour lesquelles on se permet d’utiliser une telle notation.
(suite…)La suite de Fibonacci est la suite définie par ses deux premiers termes \(F_0=F_1=1\) et par la relation de récurrence suivante:$$\forall n\in\mathbb{N},\ F_{n+2}=F_{n+1}+F_{n}.$$ Nous allons nous pencher sur cette suite afin de déterminer une expression de son terme général en fonction de son rang.
(suite…)