Le théorème de Pick

On considère un polygone convexe, c’est-à-dire une figure géométrique constituée de plusieurs côtés rectilignes de sorte qu’aucun sommet ne “rentre”  dans la figure, sur un maillage régulier de sorte que chaque sommet soit sur un nœud de ce maillage comme l’illustre le schéma ci-dessous.

Le théorème de Pick stipule que la superficie du polygone peut être calculée de façon simple à l’aide de la formule :  \[ \mathcal{A}=i+\frac{b}{2}-1\]
exprimée en unités d’aire, où “i” représente le nombre de nœuds intérieurs au polygone et “b” celui des nœuds se trouvant sur ses côtés.

(suite…)