On considère un polygone convexe, c’est-à-dire une figure géométrique constituée de plusieurs côtés rectilignes de sorte qu’aucun sommet ne « rentre » dans la figure, sur un maillage régulier de sorte que chaque sommet soit sur un nœud de ce maillage comme l’illustre le schéma ci-dessous.
Le théorème de Pick stipule que la superficie du polygone peut être calculée de façon simple à l’aide de la formule : \[ \mathcal{A}=i+\frac{b}{2}-1\]
exprimée en unités d’aire, où « i » représente le nombre de nœuds intérieurs au polygone et « b » celui des nœuds se trouvant sur ses côtés.
(suite…)